Store-Operated Ca2+ Entry Evidence for a Secretion-like Coupling Model

نویسندگان

  • Randen L Patterson
  • Damian B van Rossum
  • Donald L Gill
چکیده

The elusive coupling between endoplasmic reticulum (ER) Ca2+ stores and plasma membrane (PM) "store-operated" Ca2+ entry channels was probed through a novel combination of cytoskeletal modifications. Whereas coupling was unaffected by disassembly of the actin cytoskeleton, in situ redistribution of F-actin into a tight cortical layer subjacent to the PM displaced cortical ER and prevented coupling between ER and PM Ca2+ entry channels, while not affecting inositol 1,4,5-trisphosphate-mediated store release. Importantly, disassembly of the induced cortical actin layer allowed ER to regain access to the PM and reestablish coupling of Ca2+ entry channels to Ca2+ store depletion. Coupling is concluded to be mediated by a physical "secretion-like" mechanism involving close but reversible interactions between the ER and the PM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical and functional characterization of Orai proteins.

Stimulation of immune cells triggers Ca2+ entry through store-operated Ca2+ release-activated Ca2+ channels, promoting nuclear translocation of the transcription factor NFAT. Through genome-wide RNA interference screens in Drosophila, we and others identified olf186-F (Drosophila Orai, dOrai) and dStim as critical components of store-operated Ca2+ entry and showed that dOrai and its human homol...

متن کامل

Cleavage of SNAP-25 and VAMP-2 impairs store-operated Ca2+ entry in mouse pancreatic acinar cells.

We recently reported that store-operated Ca(2+) entry (SOCE) in nonexcitable cells is likely to be mediated by a reversible interaction between Ca(2+) channels in the plasma membrane and the endoplasmic reticulum, a mechanism known as "secretion-like coupling." As for secretion, in this model the actin cytoskeleton plays a key regulatory role. In the present study we have explored the involveme...

متن کامل

A role for cofilin in the activation of store-operated calcium entry by de novo conformational coupling in human platelets.

Store-operated Ca2+ entry (SOCE) is a major mechanism for Ca2+ influx in platelets and other cells. De novo conformational coupling between elements in the plasma membrane and Ca2+ stores, where the actin cytoskeleton plays an important regulatory role, has been proposed as the most likely mechanism to activate SOCE in platelets. Here we have examined for the first time changes in platelet F-ac...

متن کامل

Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton.

We have recently reported that store-mediated Ca(2+) entry in platelets is likely to be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, a model termed 'secretion-like coupling'. In this model the actin cytoskeleton plays a key regulatory role. Since tyrosine kinases have been shown to be important for Ca(2+) entry in platelets and other c...

متن کامل

Regulation of store-operated calcium entry during cell division.

Store-operate Ca2+ channels gate Ca2+ entry into the cytoplasm in response to the depletion of Ca2+ from endoplasmic reticulum Ca2+ stores. The major molecular components of store-operated Ca2+ entry are STIM (stromal-interacting molecule) 1 (and in some instances STIM2) that serves as the endoplasmic reticulum Ca2+ sensor, and Orai (Orai1, Orai2 and Orai3) which function as pore-forming subuni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 98  شماره 

صفحات  -

تاریخ انتشار 1999